organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethylammonium 3,5-bis(trifluoromethyl)pyrazolide

Hannes Vitze, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 9 July 2007; accepted 10 July 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.067; wR factor = 0.191; data-to-parameter ratio = 12.5.

The title compound, C₂H₈N⁺·C₅HF₆N₂⁻, crystallizes with discrete anions and cations, which are linked by N-H···N hydrogen bonds to form centrosymmetric dimers. Geometric parameters are in the usual ranges.

Related literature

For related literature, see: Bieller et al. (2006); Graziani et al. (2002); Trofimenko (1993).

Experimental

Crystal data $C_2H_8N^+ \cdot C_5HF_6N_2^ M_r = 249.17$ Monoclinic, $P2_1/c$ a = 5.9507 (11) Åb = 15.4492 (19) Å c = 11.8647 (18) Å $\beta = 90.362 \ (13)^{\circ}$

V = 1090.7 (3) Å ³	
Z = 4	
Mo $K\alpha$ radiation	
$\mu = 0.17 \text{ mm}^{-1}$	
T = 173 (2) K	
$0.25 \times 0.12 \times 0.12$ m	n

Data collection

Stoe IPDSII two-circle	1911 independent reflections
diffractometer	1287 reflections with $I > 2\sigma(I)$
8093 measured reflections	$R_{int} = 0.002$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.067$	H atoms treated by a mixture of
$wR(F^2) = 0.191$	independent and constrained
S = 1.02	refinement
1911 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
153 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H3A···N1	0.90 (4)	1.94 (5)	2.834 (4)	175 (4)
$N3-H3B\cdots N2^{i}$	1.02 (4)	1.81 (4)	2.826 (4)	175 (3)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2338).

References

Bieller, S., Haghiri, A., Bolte, M., Bats, J. W., Wagner, M. & Lerner, H.-W. (2006). Inorg. Chim. Acta, 359, 1559-1572.

Graziani, O., Toupet, L., Hamon, J.-R. & Tilset, M. (2002). Inorg. Chim. Acta, 341, 127-131.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Trofimenko, S. (1993). Chem. Rev. 93, 943-980.

supplementary materials

Acta Cryst. (2007). E63, o3462 [doi:10.1107/S1600536807033648]

Dimethylammonium 3,5-bis(trifluoromethyl)pyrazolide

H. Vitze, H.-W. Lerner and M. Bolte

Comment

Tris(1-pyrazolyl)borates ("*scorpionates*") were invented by Trofimenko more than 30 years ago and are today well established as ligands in coordination chemistry (Trofimenko, 1993). The degree of steric crowding around the boron center appears to be an important factor influencing the stability of scorpionates. The results of earlier studies and investigations in our group have shown that the scorpinates $R'B(3-Rpz)_3^-$ (II) and $R'B(3,5-R2pz)_3^-$ (III) decompose much more easily when *R* and *R*' are bulky (Bieller *et al.* 2006, Graziani *et al.* 2002). We have now discovered that (I) was obtained as a side product of the reaction between K[3,5-(CF₃)₂Pz] and 3,5-(CF₃)₂PzH on the one side and C₆F₅B(NMe₂)₂ on the other side. Geometric parameters of the title compound (I) (Fig. 1) are in the usual ranges. In the crystal, anions and cations form centrosymmetric dimers linked by N—H···N hydrogen bonds (Fig.2).

Experimental

All experiments were carried out under dry argon or nitrogen using standard Schlenk techniques. 0.385 g (1.45 mmol) $(C_6F_5)B(NMe_2)_2$, 0.350 g (1.45 mmol) 3,5- $(CF_3)_2PzH$ and 0.585 g (2.9 mmol) K[3,5- $(CF_3)_2Pz$] were solved in 9 ml THF. After stirring for 4 days at room temperature. The solvent was removed *in vacuo*. Thereby we obtained colourless crystals of the title compound (I) from the residual oil as a side product of the reaction of K[3,5- $(CF_3)_2Pz$] and 3,5- $(CF_3)_2PzH$ with $C_6F_5B(NMe_2)_2$.

Refinement

H atoms bonded to C were refined using a riding model with fixed individual displacement parameters $[U(H) = 1.2 U_{eq}(C)$ or $U(H) = 1.5 U_{eq}(C_{methyl})]$ with C—H ranging from 0.95Å to 0.98Å. The H atoms bonded to N were located in a difference map and refined freely.

Figures

Fig. 1. Perspective view of the title compound (I) with the atom numbering scheme. Displacement ellipsoids are at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Fig. 2. Partial packing diagram of the title compound (I); hydrogen bonds are shown as dashed lines.

Dimethylammonium 3,5-bis(trifluoromethyl)pyrazolide

Crystal data

$C_2H_8N^+ \cdot C_5HF_6N_2^-$	$F_{000} = 504$
$M_r = 249.17$	$D_{\rm x} = 1.517 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5427 reflections
<i>a</i> = 5.9507 (11) Å	$\theta = 3.5 - 25.1^{\circ}$
<i>b</i> = 15.4492 (19) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 11.8647 (18) Å	T = 173 (2) K
$\beta = 90.362 \ (13)^{\circ}$	Needle, colourless
$V = 1090.7 (3) \text{ Å}^3$	$0.25\times0.12\times0.12~mm$
Z = 4	

Data collection

Stoe IPDSII two-circle diffractometer	1287 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.062$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 173(2) K	$\theta_{\min} = 3.4^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: none	$k = -18 \rightarrow 17$
8093 measured reflections	$l = -13 \rightarrow 14$
1911 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H atoms treated by a mixture of independent and constrained refinement

$wR(F^2) = 0.191$	$w = 1/[\sigma^2(F_0^2) + (0.1128P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
1911 reflections	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$
153 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotr	opic or equivalent isotropi	ic displacement	narameters ($(Å^2)$)
i i dettollat atollite eool allates alla isoli		e anspiaeenieni	parameters (/	/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.2583 (4)	0.55360 (16)	0.3472 (2)	0.0434 (7)
N2	0.3744 (4)	0.48549 (17)	0.3036 (2)	0.0423 (6)
N3	0.3413 (4)	0.62168 (17)	0.5653 (3)	0.0411 (6)
НЗА	0.322 (6)	0.598 (3)	0.497 (4)	0.060 (11)*
H3B	0.451 (7)	0.586 (3)	0.612 (3)	0.060 (10)*
C1	0.1235 (5)	0.5846 (2)	0.2647 (3)	0.0436 (8)
C2	0.1473 (6)	0.5373 (2)	0.1658 (3)	0.0473 (8)
H2	0.0727	0.5450	0.0954	0.057*
C3	0.3069 (5)	0.4762 (2)	0.1955 (3)	0.0434 (7)
C4	-0.0324 (6)	0.6564 (2)	0.2881 (3)	0.0549 (9)
C5	0.4053 (6)	0.4066 (2)	0.1254 (3)	0.0543 (9)
C31	0.1198 (6)	0.6163 (3)	0.6213 (4)	0.0584 (10)
H31A	0.0687	0.5560	0.6218	0.088*
H31B	0.0107	0.6519	0.5800	0.088*
H31C	0.1334	0.6374	0.6989	0.088*
C32	0.4315 (6)	0.7110 (2)	0.5599 (3)	0.0538 (9)
H32A	0.5774	0.7104	0.5221	0.081*
H32B	0.4500	0.7338	0.6365	0.081*
H32C	0.3267	0.7478	0.5176	0.081*
F41	-0.1977 (5)	0.63381 (18)	0.3586 (3)	0.0956 (10)
F42	-0.1288 (5)	0.68795 (18)	0.1954 (2)	0.0934 (10)
F43	0.0655 (5)	0.72381 (15)	0.3391 (2)	0.0815 (8)
F51	0.2993 (6)	0.3963 (2)	0.0282 (2)	0.1060 (12)
F52	0.6212 (5)	0.4206 (2)	0.0986 (3)	0.0970 (10)
F53	0.4094 (5)	0.32993 (14)	0.1768 (2)	0.0803 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0449 (14)	0.0413 (14)	0.0442 (16)	0.0022 (11)	0.0044 (12)	-0.0043 (11)
N2	0.0438 (13)	0.0425 (14)	0.0409 (15)	0.0030 (11)	0.0046 (11)	-0.0013 (11)
N3	0.0421 (14)	0.0421 (14)	0.0391 (16)	0.0015 (11)	0.0029 (12)	-0.0019 (12)
C1	0.0451 (17)	0.0436 (17)	0.0422 (19)	0.0023 (13)	-0.0005 (14)	0.0047 (13)
C2	0.0528 (19)	0.0509 (18)	0.0380 (18)	0.0020 (15)	-0.0044 (14)	0.0033 (14)
C3	0.0498 (17)	0.0429 (17)	0.0375 (18)	0.0003 (13)	0.0026 (13)	0.0017 (13)
C4	0.056 (2)	0.052 (2)	0.057 (2)	0.0114 (16)	-0.0082 (17)	-0.0055 (17)
C5	0.068 (2)	0.055 (2)	0.040 (2)	0.0085 (17)	0.0063 (16)	-0.0007 (15)
C31	0.0456 (18)	0.066 (2)	0.064 (2)	-0.0067 (16)	0.0150 (16)	0.0052 (18)
C32	0.053 (2)	0.0518 (19)	0.057 (2)	-0.0080 (16)	0.0023 (17)	0.0020 (16)
F41	0.0723 (16)	0.0850 (18)	0.130 (3)	0.0210 (13)	0.0406 (17)	0.0022 (16)
F42	0.113 (2)	0.0882 (18)	0.0785 (19)	0.0518 (16)	-0.0357 (16)	-0.0122 (14)
F43	0.0949 (18)	0.0526 (13)	0.0967 (19)	0.0166 (12)	-0.0201 (14)	-0.0215 (12)
F51	0.145 (3)	0.114 (2)	0.0582 (17)	0.060 (2)	-0.0348 (16)	-0.0388 (15)
F52	0.0852 (18)	0.099 (2)	0.108 (2)	0.0051 (15)	0.0506 (16)	-0.0257 (16)
F53	0.127 (2)	0.0465 (12)	0.0674 (16)	0.0130 (13)	0.0239 (15)	-0.0008 (10)

Geometric parameters (Å, °)

1.350 (4)	C4—F42	1.330 (4)
1.363 (4)	C4—F43	1.336 (4)
1.349 (4)	C4—F41	1.342 (5)
1.482 (4)	C5—F51	1.321 (4)
1.482 (4)	C5—F53	1.332 (4)
0.90 (4)	C5—F52	1.343 (4)
1.02 (4)	C31—H31A	0.9800
1.391 (5)	С31—Н31В	0.9800
1.474 (5)	C31—H31C	0.9800
1.383 (5)	C32—H32A	0.9800
0.9500	С32—Н32В	0.9800
1.481 (5)	C32—H32C	0.9800
107.4 (2)	F43—C4—C1	113.5 (3)
107.2 (2)	F41—C4—C1	112.7 (3)
113.3 (3)	F51—C5—F53	107.4 (3)
106 (2)	F51—C5—F52	105.4 (3)
112 (3)	F53—C5—F52	103.7 (3)
107 (2)	F51—C5—C3	112.9 (3)
107 (2)	F53—C5—C3	113.3 (3)
110 (3)	F52—C5—C3	113.5 (3)
111.3 (3)	N3—C31—H31A	109.5
120.2 (3)	N3—C31—H31B	109.5
128.5 (3)	H31A—C31—H31B	109.5
102.5 (3)	N3—C31—H31C	109.5
128.7	H31A—C31—H31C	109.5
	$\begin{array}{c} 1.350 \ (4) \\ 1.363 \ (4) \\ 1.349 \ (4) \\ 1.482 \ (4) \\ 1.482 \ (4) \\ 1.482 \ (4) \\ 0.90 \ (4) \\ 1.02 \ (4) \\ 1.391 \ (5) \\ 1.474 \ (5) \\ 1.383 \ (5) \\ 0.9500 \\ 1.481 \ (5) \\ 107.4 \ (2) \\ 107.2 \ (2) \\ 113.3 \ (3) \\ 106 \ (2) \\ 112 \ (3) \\ 107 \ (2) \\ 110 \ (3) \\ 111.3 \ (3) \\ 120.2 \ (3) \\ 128.5 \ (3) \\ 102.5 \ (3) \\ 128.7 \end{array}$	1.350(4) $C4-F42$ $1.363(4)$ $C4-F41$ $1.349(4)$ $C4-F41$ $1.482(4)$ $C5-F51$ $1.482(4)$ $C5-F53$ $0.90(4)$ $C5-F52$ $1.02(4)$ $C31-H31A$ $1.391(5)$ $C31-H31B$ $1.474(5)$ $C32-H32A$ 0.9500 $C32-H32B$ $1.481(5)$ $C32-H32C$ $107.4(2)$ $F43-C4-C1$ $113.3(3)$ $F51-C5-F53$ $106(2)$ $F51-C5-F52$ $112(3)$ $F53-C5-C3$ $107(2)$ $F53-C5-C3$ $107(2)$ $F53-C5-C3$ $111.3(3)$ $N3-C31-H31A$ $120.2(3)$ $N3-C31-H31B$ $128.5(3)$ $H31A-C31-H31C$

С1—С2—Н2	128.7	H31B—C31—H31C	109.5
N2—C3—C2	111.7 (3)	N3—C32—H32A	109.5
N2—C3—C5	119.6 (3)	N3—C32—H32B	109.5
C2—C3—C5	128.7 (3)	H32A—C32—H32B	109.5
F42—C4—F43	105.9 (3)	N3—C32—H32C	109.5
F42—C4—F41	107.3 (3)	H32A—C32—H32C	109.5
F43—C4—F41	103.9 (3)	H32B—C32—H32C	109.5
F42—C4—C1	112.9 (3)		
C1—N1—N2—C3	-0.3 (3)	N1—C1—C4—F43	50.2 (5)
N2—N1—C1—C2	0.4 (4)	C2-C1-C4-F43	-133.8 (4)
N2—N1—C1—C4	177.0 (3)	N1-C1-C4-F41	-67.5 (4)
N1—C1—C2—C3	-0.3 (4)	C2-C1-C4-F41	108.4 (4)
C4—C1—C2—C3	-176.5 (3)	N2-C3-C5-F51	169.9 (3)
N1—N2—C3—C2	0.1 (3)	C2—C3—C5—F51	-10.5 (5)
N1—N2—C3—C5	179.9 (3)	N2—C3—C5—F53	47.5 (5)
C1—C2—C3—N2	0.1 (4)	C2—C3—C5—F53	-132.8 (4)
C1—C2—C3—C5	-179.6 (3)	N2-C3-C5-F52	-70.3 (4)
N1—C1—C4—F42	170.7 (3)	C2—C3—C5—F52	109.3 (4)
C2-C1-C4-F42	-13.4 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3A…N1	0.90 (4)	1.94 (5)	2.834 (4)	175 (4)
N3—H3B···N2 ⁱ	1.02 (4)	1.81 (4)	2.826 (4)	175 (3)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

II